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Introduction: Zero-Shot Learning

* Assume we want to build a
machine learning model to
classify these 8 classes of
animals

* In the best case, we need at
least one example for each
animal

* Typically we will need much 3
more than one example per o .t

class e B T



Introduction: Zero-Shot Learning

* Now assume we want to build
a machine learning model to
classify all animals

* There’s 1,899,587 described
species in the world, so we will
need a dataset with roughly 2
million different classes

* Questions:
Do we need data for each class?

* What if a new species is
discovered over time?

* How can we include this new
unseen classes in the model? kgt 4 R
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Motivation

Positive Examples
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Negative Examples

: Zero-Shot Learning

Machine Learning

\Y[oJe[]
(Is it a horse?)

Yes, it’s a horse

No, it is something
else




Motivation: Zero-Shot Learning

* Now assume we want the model to recognize if it is a horse, a zebra,
or something else?

e Can we do this without collecting data for zebras?

e s i fon Siap Second Classification Step

(Does it have black and
white stripes?)

(Does it look like a horse?)

Long slender legs?
Long thick necks?

Large elongated heads?

o Attributes Vector




Definition: Zero-Shot Learning

* Traditional Learning
* [nput:
* Dataset X ={Xy, X1, X5, ... X5}
* Labels for each data point L = {Ly, Ly, L, .... L, }
* Typically we have m << L
* Qutput:
* A model that maps new data point X,,..,, = alabel L; € {Ly, L1, Ly, .... L;;}

e Zero-Shot Learning:

* Input:
e Dataset X ={Xy, Xy, X5, ... X5}
* Labels for each data point L = /Ly, Ly, Lo, .... L, }
* Typically we have m << L

* Qutput:
* A model that maps new data point X,,.,, = a set of attributes (semantic features) F € {F,, F';, F,, .... F,;}
* A second model that estimates the “similarity” between the set of attributes and the attribute profiles
* New attribute profiles can be added dynamically (“on-the-fly”)



Training phase

raining vs Prediction

Prediction phase

Seen classes
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Assumption: Semantic attributes are inclusive

Semantic
Representation

Bird?
> Head Color?

Black Bulbul Body Color?

We need other
attributes:

Grosbeak 1- Face color?
2- Beak color?

We need a dynamic representation for features!




A Generative Adversarial Approach for Zero-Shot
Learning from Noisy Texts (CVPR, 2018)

* Main idea:
e Can we “imagine” what a new class will look like “Visually” based on its “textual”
description?
* If so we can do the following:

1. Given a “textual” description of the new class, generate images that “Visually” meets the
description

2. Use these images to train a regular supervised model

* |s this still a “Zero-Shot” learning problem?
* Form ML perspective: No
* From Systems perspective: Yes



A Generative Adversarial Approach for Zero-Shot
Learning from Noisy Texts (CVPR, 2018)

* Main idea:
e Can we “imagine” what a new class will look like “Visually” based on its “textual”
description?
* If so we can do the following:

1. Given a “textual” description of the new class, generate images that “Visually” meets the
description

2. Use these images to train a regular supervised model
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* But how can we map “textual” descriptions to “Images” (text-to-photo)??



How to “imagine” classes from textual
descriptions?

* GAN: Generative Adversarial Networks
* Assume we have a model that maps images = features

Long slender legs? Yes
Long thick necks? Yes

Deep torso build? Yes

Large elongated heads? Yes

g

Can we map features = images?
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Challenges of GAN: generate “Real” images
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mages Space Attributes Space

We can map a “real” image to the attributes space
1) How can we map a single vector in the attribute space to a “real” image?



Challenges of GAN: one-to-many mapping
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Images Space Attributes Space

We can map multiple images to a single vector in the attributes space



GAN: Challenges
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Images Space Attributes Space

We can map multiple images to a single vector in the attributes space
1) How can we map a single vector in the attribute space to multiple images?



Two Adversarial Nets: Zero-sum Game

Attribute
Vector

Random Input
Vector

Generator

Model

Generated
Example

Example of the GAN Generator Model

VR
M/

We will have two adversarial models:
(1) a model that generates an image
(2) a model that can classify the image as real or fake

Input Example W

Discriminator
Model

Binary Classification
Real/Fake

Example of the GAN Discriminator Model

Attribute
Vector




Two Adversarial Nets: Zero-sum Game

Attribute
Vector

Random Input
Vector

Generator

Model

Generated
Example

Example of the GAN Generator Model
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Input Example W

Discriminator
Model

Binary Classification
Real/Fake

Example of the GAN Discriminator Model

Attribute
Vector

In case the Generator produces an image and the Discriminator says its fake -> no
changes to discriminator + update the weights of the Generator’s model




Two Adversarial Nets: Zero-sum Game
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Example of the GAN Discriminator Model

Attribute
Vector

In case the Generator produces an image and the Discriminator says its Real -> no
changes to Generator + update the weights of the Discriminator’s model




Two Adversarial Nets: Zero-sum Game
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Example of the GAN Generator Model
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Example of the GAN Discriminator Model
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Vector

Terminate when a “batch” of generated images are each classified as “not sure =
50% real and 50% fake”




Examples of GAN generated human faces

2014 2015 2016 2017

Example of the Progression in the Capabilities of GANs From 2014 to 2017. Taken from The Malicious Use of
Artificial Intelligence: Forecasting, Prevention, and Mitigation, 2018.



A Generative Adversarial Approach for Zero-Shot

Learning from Noisy Texts (CVPR, 2018)

* Main steps:

1.

For a new class, get the
describing “Wikipedia” article

Map the “Wikipedia” article to a
semantic feature vector

Feed the GAN with [Semantic
feature vector | | random vector]

The GAN generates as many
“plausible” images as we need to
train our classifier with the new
class
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Data generation

Once the spring molt is
complete, the body of the /

male is a brilliant lemon yellow. 7w
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Supervised classifier

Figure 1: Illustration of our proposed approach. We lever-
ages GANs to visually imagine the objects given noisy
Wikipedia articles. With hallucinated features, a supervised
classifier is trained to predict image’s label.



Evaluation

* Datasets:
1. Caltech UCSD Birds-2011 (CUB): 200 categories of bird species with a total of 11,788 images
2. North America Birds (NAB): 1011 classes and 48,562 images

* Experimentation setup:

1. Textual Representation: Raw Wikipedia articles text is tokenized into words, the stop words are removed and
remaining words are stemmed. Finally Term-Frequency Inverse-Document-Frequency(TF-IDF) feature vector

1s extracted.

29 ¢¢

2. Visual Features: There are seven semantic parts: “head”, “back”, “belly”, “breast”, “leg”, “wing”, “tail”.



Evaluation: Testing on unseen classes

.. CUB NAB
ZeroShot Recognition: methods SCS | SCE | SCS | SCE
In the scenario of SCS-split, MCZSL [1] 34.7 - - -
for each unseen class, there WAC-Linear [9] | 27.0 5.0 - -
exists one or more seen WAC-Kerngl [8]| 33.5 7.7 11.4 6.0
[ hat bel h ESZSL [36] 28.5 7.4 24.3 6.3
classes that belong to the SIE [3] 0.9 B B B
same parent category. ZSLNS [32] 29.1 7.3 24.5 6.8
SynC gt ]5] 28.0 8.6 18.4 3.8
SynCmU [5] 12.5 5.9 — —
ZSLPP [10] 37.2 9.7 30.3 8.1
In SCE_Split, the parent GAZSL 43.7 10.3 35.6 8.6

categories of unseen

classes are separate from  Table 1: Top-1 accuracy (%) on CUB and NAB datasets
those of the seen classes.  with two split settings.



Evaluation: Testing on both seen and unseen classes

» ZeroShot Recognition:

The conventional zero-shot
recognition considers that

ESZSL:  0.045
-=»= ZSLNS:  0.044

queries come from only e, B o B 0. 00w
7 St 0017 G Eonl o
unseen classes. ;" SN o), s Ry e e
Ayt -'ll;-T
A calibration factor d is used to (a) CUB with SCS splitting (b) CUB with SCE splitting

balance the accuracy scores Eoure 4 Seen.U c
1eUre 4. HEEn-uUnscen accurac LUrve
between seen and unseen classes o y



Evaluation: zero-shot retrieval

 Main idea:

* Given an image as a
query, find the most
similar images

* The input image can
be as simple as a Sy
hand drawn sketch -




Evaluation: zero-shot retrieval

CUB NAB
methods 25% | 50% | 100% | 25% | 50% | 100%

ESZSL [36] | 279 | 27.3 | 22.7 | 289 | 27.8 | 20.85
ZSLNS [32]| 29.2 | 29.5 | 23.9 | 28.78 | 27.27 | 22.13
ZSLPP[10] | 423 | 420 | 36.3 | 369 | 357 | 313

VP-only 17.8 | 164 | 139 | 15.1 | 13.1 | 11.5
GAN-only | 180 | 175 | 152 | 217 | 203 | 16.6
GAZSL 49.7 | 48.3 | 40.3 | 41.6 | 37.8 | 31.0

Table 3: Zero-Shot Retrieval using mean Average Precision
(mAP) (%) on CUB and NAB with SCS splitting.



What’s next?

* In this paper:
* The highest accuracy achieved on “unseen” classes is < 50%
* If there is no “common parent” with a “seen” class, the accuracy drops to < 15%
* Most recent papers have achieved a slightly better performance (< 55%)

* Does it have to be zero-shot? Or can we use a few-shot learning?
* With 5-shot, (Kai Li et. al, CVPR 2020) achieved 84% accuracy on the CUB dataset

n4 nhn on 18 g ny o na nan n -I’l| n3 04 o6 aa 18
cWGAN cWGAN + CR cWGAN + CR + AR
Figure 2. --SNE [26] visualization of synthesized feature embeddings. The real features are indicated by %. Different colors represent
different classes.



Conclusion

e Zero-shot (or few-shot) learning is an effective technique for transfer learning in
ML problems

* |t can be very useful in cases of:

 Lack of sufficient training samples for particular classes (for example, if we have many images
for a horse, but none (or very few) for a zebra)

* We can map inputs from seen and unseen classes to a set of attributes (either manually
defined or automatically extracted from textual descriptions)

* The applicability of Zero-shot learning (ZSL) is beyond image classification
* For example, suppose we want to train a performance predictor for any system
* The performance predictor is dependent on the workload
* Every time the workload changes, we need to “re-train” the prediction model

* If we can map any workload to a set of attributes, we can use ZSL or FSL to quickly adapt to
unseen workloads



Thanks!
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Figure 4: Seen-Unseen accuracy Curve on two benchmarks
datasets with two split settings



